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OPTIMAL OPEN LOOP AND NONLINEAR FEEDBACK

CONTROL FOR REMOTE ORBITAL CAPTURE

Joseph William Widhalm Jr., Ph.D.

Department of Aeronautical and Astronautical Engineering
University of Illinois at Urbana-Champaign, 1985

Optimal open loop and nonlinear feedback control his-

tories are presented for the problem of detumbling (passivat-

ing) a target satellite by a remotely operated robot

spacecraft. Detumbling is required so that the robot space-

craft, sometimes called a teleoperator or orbital maneuvering

vehicle (OMV), can return the target satellite to low-Earth

orbit for servicing and repair. The dynamics of the coupled

two-body system are described with equations of motion

derived from an Eulerian formulation (the Hooker-Margulies

equations). Two degrees of rotational freedom are allowed

at the joint which connects the OMV and target spacecraft,

and the joint is allowed to translate on the surface of the

OMV. The initial condition of the axially symmetric target

satellite is free spin and precession. Representative

masses and inertias are assumed for each body. The detumbl-

ing controls, which are the external (thruster) and internal

(joint) torques applied by the OMV, are found from optimal

control theory and Liapunov stability theory. Applying

optimal control theory yields a nonsingular two-point-

boundary-value-problem which is solved numerically for the

open loop controls over a specified time interval. Control



iv

constraints on the thrusters and one of the joint torques

are also considered. Liapunov stability theory is used to

derive a nonlinear feedback control law which results in

the asymptotic stability of a set of equilibria for the

two-body system. This control law is analyzed

numerically and compared to the results of optimum open loop

control. Also presented is an example in which open loop
A

controls nearly detumble the target satellite and feedback

controls complete detumbling. In all cases the constraint

force and torque at the joint are determined. Detumbling is

shown to be a very benign process requiring only very small

control torques and producing only small constraint loads.
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CHAPTER 1

INTRODUCT ION

1.1 Problem Statement and Relevance

The in-orbit servicing and repair of satellites is

a new area of space operations now possible because of the

capabilities of the Space Shuttle. In April 1984 a Space

Shuttle crew successfully captured and repaired a satel-

lite, the Solar Maximum spacecraft, for the first

time. A significant part of that effort was the detumbling

or passivating of the satellite which had to be accom-

plished before the repair could begin. The detumbling

proved to be quite difficult even though the angular rates

of the satellite were very small.

Many of the satellites which could benefit from

in-orbit servicing or repair are in orbits beyond the reach

of the Space Shuttle. To retrieve these satellites to the

Space Shuttle's orbit, a remotely operated spacecraft,

sometimes called a teleoperator or orbital maneuvering

vehicle (OMV), is required. The OMV would have to rendezvous

and dock with the target satellite. Then the OMV would
S

have to detumble or passivate the target, as the Shuttle

did with the Solar Maximum spacecraft, to complete capture.

Detumbling would be accomplished by applying forces and

torques to the target to remove any motion relative to

S



2

the OMV and would be necessary if the target were spin-

stabilized or had experienced a failure of its attitude

control system. Finally, attitude maneuvers would be per-

formed to orient the coupled two-body system for return to

iow-Larth orbit.

The detumbling of a target satellite by an OMV is

the specific problem of concern in this work. The OMV is

considered to have rendezvoused and docked with the target

satellite, ani detumbling is to be effected by applying

torques on the target through the OMV. The absolute motion

of the OMV is also to be partially controlled during

detumbling by applying torques on the OMV. In the remainder

of this chapter, previous approaches to the problem of

remote orbital capture by an OMV are reviewed, and the

approaches taken in this work are descriled.

S
1.2 Previous Approaches

Work began on the problem of remote orbital capture

in the early 1970's. Efforts to define the concept and

requirements of teleoperator spacecraft were made by Onega

and CLingman [1] and by Smith and DeRocher [2]. At the same

time the dynamics and control of remote orbital capture

beoian to be considered. Faile, et al. [3] analyzed the

response of a target spacecraft to torques applied by an

"14MV which had completed a rendezvous and docking with the

trr:et spacecra t. IIwever, they assumed that the OMV was

I . .. . . .... .r . ... ... .
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, = , + - - .
EJ AJ

- m x[ + 2w x D (2.15)

By the same argument, motion of the joints on some

other body, ,, relative to the mass center of body p can be

allowed. Referring back to equation (2.3) , such motion is

treated by using the more complete form of the second

derivative of D as in equation (2.13), rather than the

form given by equation (2.12). Substituting as before leads

to the conclusion that the expression for E in equationx

(2.15), as given by equation (2.11), must be changed by

substituting

R -x-fR
m[D + 2a) x D + w x (w x D )]

for the term mu x (W x D ) . With this change, equation

(2.15) becomes the attitude equation of motion for body X

properly accounting for joint motions relative to any of the

bodies the joints connect.

2.3 Elimination of the Unknown Constraint Torques

Examining equation (2.15) reveals the explicit

appearance of the constraint torques, Tj' while the con-
ranfces,-H

straint forces, FH, have been eliminated. Hooker [71 shows

how to eliminate the constraint torques from equation (2.15)

b ] consideringj the attitude motion of the complete system

.I
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44

The restriction that the joints on body ) must be

fixed relative to the center of mass of body A is contained

in equations (2.6) and (2.7) where Hooker and Margulies [6]

assumed the vector D,, to be fixed in body N so that

D x D + x [c x D\] (2.12)

If, on the otner hand, motion of a joint on body X with 0

respect to body X (e.g. along the surface of body X) is

allowed, D is then no longer fixed in body N, so equation

(2.12) becomes

+ 2 X - DR X + xD, + w x [W x D ], (2.13)

where superscript R indicates differentiation with respect 0

to time relative to the reference frame fixed in body X.

Substituting equation (2.13) into equation (2.6) yields

m x D X - x X

m X [ + 2w x D (2.14)

Furtner substitution of equation (2.14) into equation (2.3)

and then equatinn (2.3) into Euler's equation now leads

directly to the attitude equation of motion for body N S

in which the joints on body are free to translate rela-

tive to the cenLer of mass of bodv . The final result is

given here 3s
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-2 -2X\ = [mnD x + E m 1

- [mxDxDx+ m x D D A] (2.7)

Substituting equation (2.6) into equation (2.3) and then

equation (2.3) into Euler's equation leads directly to the

attitude equation of motion of body X under the influence

of gravity gradient torque. That equation given by Hooker

and Margulies [61 is written in an equivalent form by Hooker

[7] as S

-C
E = + E Tj , (2.8)

F-S JeJl

where is the dyadic,
2

= *+ m [g2 1 D

+ E m [D5 1 D --D ] (2.9)

ml (X) = -mi [DW D 1 - mD ] , (2.10)

and E is the vector

E 3y7 xx - x x x" W A (2.11)

T + Z TSDA+ 7j +  x A +

+ .' DI x{F' +rn x 1x] m [l-3pp] -D Il}
i- ii -i
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-H "
+ M F (2.1)

X j ~ X=

and

T + T
¢1 " ~t + x WX, T j E J}, Xj

-- TH (2.2 )

where e is the vector from the center of mass of body X

to the joint, j. on body A. The hinge forces, F XH are

then eliminated from Euler's equation by summing Newton's

equation over the bodies, P, connected to the body, X, at

each joint, j. An expression for F results, which can be
Aj

substituted into the last term of Euler's equation to yield

J~ j x H = D, x FA + D AP x F P

E m x D + m ZD x D (2.3)

where DX =- m m (.4

and Dil = D + . (2.5)

Here ,t means the vector from the center of mass of body A

to the joint, j, leading to body .I. From equation (2.3)

it can be shown that
S

- Z m x DA X x X A (2.6)

where X t is the dyadic defined by Hooker and Margulies [6]

as
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the revised n-body equations the two-body equations for

the capture problem are derived. The equation for the

constraint torque on the joint given by Hooker [73 also

becomes modified to account for joint motion in the

process of rederiving the system equations. The constraint

force on the joint is found by directly applying Newton's

equation for the translational motion of either the OMV or

the target. The resulting equation for the constraint

force confirms that the joint motion must be prescribed

and is not directly determined by the constraint force

on the joint. Finally, the methods used to verify the

system attitude equations, the constraint torque equation,

and the constraint force equation are discussed. Various

test cases are used along with the principle of conserva-

tion of angular momentum to compare computer generated re- I
sults with known results. The expression for the system

angular momentum is derived becuase of its importance to

the verifying process.

2.2 Review and Modification of the Hooker and
Margulies Equation

To see how the Hooker and Margulies [61 derivation

must be changed to account for joint translation, that 0

derivation must be traced carefully. Following their

development, Newton's and Euler's equations for body X

in an n-body system are:
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CHAPTER 2

EQUATIONS OF MOTION

2.1 Introduction

An Eulerian derivation of the equations of attitude

motion of multi-body satellites has been presented by Hooker

and Margulies [6] and Hooker [7]. These equations are

appropriate for a system of n rigid bodies connected by

joints which allow relative motion between the bodies

through rotations at the joints. Two restrictions are

imposed on the system in this formulation. First, chains

of connected bodies may not form closed loops. Second,

joint positions must be fixed with respect to the bodies

they connect. Otherwise, the axes of rotation at each joint,

arbitrary external forces and torques, and arbitrary inter-

nal torques at the joints may be specified. Constraint

forces and torques at the joints do not appear in the final

equations of motion, but methods are given to determine

these quantities after the absolute angular and transla-

tional accelerations of each body are known.

Modifying these equations to allow specified joint

translational motion is the subject of this chapter. First,

the Hooker and Margulies derivation [6,7] is reviewed to

show how the form of the equations is affected by assuming

fixed joints, and then the required changes are made. From
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Liapunov stability theory is employed to derive a non-

linear feedback control law to effect capture. Results

are presented for this control law for comparison with

the open loop results of Chapter 3.

Merging the results of Chapters 3 and 4 into con-

clusions and suggestions for further work is the subject

of Chapter 5. After comparing open loop and feedback

results, an example is presented in which open loop con-

trol brings the two-body system very close to the final

spin-stabilized equilibrium; then Liapunov feedback

control completes the capture. From the various approaches

to the capture problem, significant points are highlighted

to show how the general capture problem has been brought

into better perspective. Finally, several suggestions

are offered for continuing this work to refine the OMV

concept and requirements for rendezvous and docking and

to consider target spacecraft with more genera- mass

properties and configurations.
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Also of importance as a part of the solution of

the capture problem are the constraint force and torque on

the joint during capture. These quantities determine the

structural requirements of the joint and the force required

to move the joint during capture. Equations to compute

these quantities are a part of the work of Hooker and

Margulies [6] and Hooker [7] but again must be modified to

account for joint translational motion. The necessary

changes to these equations are also developed in Chapter 2

and the aforementioned work by Conway and Widhalm [9].

With the necessary dynamic equations of the two-

body system, a control strategy or control law to effect

detumbling must be found. Control of multi-body systems

interconnected as proposed here has not been addressed

previously, but optimal control theory and Liapunov

stability theory provide methods for deriving open loop

and nonlinear feedback controls for such nonlinear systems.

In Chapter 3 the capture problem is solved using optimal

control theory. The nonsingular two-point-boundary-

value-problem (TPBVP) resulting from this approach is

solved numerically for the system state and open loop

control histories over the specified time interval for

capture. Cases in which the controls are constrained and

unconstrained are presented to illustrate the effects of

simplifying the control system. These results are also

discussed by Conway and Widhalm [101. In Chapter 4
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capture problem proposed by Conway, et al. [5] but with

the additional degree of freedom that the joint is

moveable and controllable on the surface of the OMV.

To limit the complexity of the capture problem,

the following assumptions are made:

1. Joint motion does not change the mass properties

of the OMV.

2. All controls are continuous.

3. The target satellite is passive during capture.

4. Absolute motion of the OMV is controlled by

thrusters on the OMV which do not change the mass proper-

ties of the OMV by their operation.

5. Space environmental effects (gravity gradient,

solar torque, etc.) are ignored.

Solving this capture problem first requires the

A equations of attitude motion of the two-body system to be

developed including the effects of joint motion. An

Eulerian derivation is again desired because the control

forces and torques appear explicitly. However, the general

n-body equations given by Hooker and Margulies [6] and

Hooker [7] cannot be applied directly because their

derivation does not permit connecting joints to translate

relative to the bodies they connect. Consequently, their

derivation must be modified to account for joint transla-

tion, which is the subject of Chapter 2 and a work by

Conway and Widhalm [9].
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of the OMV. The initial value of , is determined by the

initial values of yi and Y2 for steady spin and precession

from Greenwood [8].

With the initial state of the system defined, the

final state must be considered. Since the two-body system

is to be returned to low-Earth orbit after capture, the

capture process should terminate with no relative motion

between the target and the OMV. The OMV e 3 axis should

also maintain a constant orientation in space with no

further active control. This is possible with the config-

uration proposed by Conway, et al. [5]; but, since the joint

position is fixed on the OMV, there is only one scheme

available, that which completely annihilates the system

angular momentum. The final yI, however, is limited only

by the physical constraints of the system. Unfortunately,

the initial cone angle, yl, may not be accurately known

prior to rendezvous so that the joint may not be preposi-

tioned. Also the joint position at the start of capture

may not permit a suitable target orientation relative to

the OMV for the return to low orbit. If, on the other

hand, the joint could move on the surface of the OMV, these

problems would be eliminated. Furthermore, if the joint

were moved during capture to a position on the e3 axis,

the final two-body configuration could be spin-stabilized.

Therefore, the objective of this work is to solve the
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problem. Consequently, the objective here is to extend

the work of Conway, et al. [5] by solving their capture

problem for detumbling control histories.

1.3 The Present Approach

In extending the work of Conway, et al. [5], the cap-

ture problem they proposed is left unchanged. That is,

the target satellite is to be captured from a state of

steady spin and precession. The problem is particularly

well posed because the docking of the OMV with the target

at the joint on the OMV can be accomplished with no coupling

effects between the two bodies. Consequently, the spin and

precession rates of the target, as well as the spin rate of

the OMV, are unchanged through the docking sequence.

To clarify the dynamic state of the two-body sys-

tem after docking, reference is made to Figure 1 where

the e basis and the n basis are fixed at the centers of

mass of body 0 (OMV) and body 1 (target) respectively.

The initial spin rate, p, of the OMV is equal to the

initial precession rate of the target. The initial

angular momentum vectors of the OMV and the target lie on

the e3 axis and have the same sign. The center of mass of

the target is initially on the e3 axis. The joint posi-

tion on the surface of the OMV is determined by the

initial cone angle, yl, and the distance in the ;3 direc-

tion from the center of mass of the target to the surface
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Figure 1. OMV-Target Systemj
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precession can be considereu. As shown in Figure 1,

the OMV (body 0) they propose is joined to the target

(body 1) through a two degree of freedom ball and socket

joint with a grappling device. An Eulerian derivation of

the equations of motion of the two-body system is developed

from the general n-body equations given by Hooker and Margu-

lies [6] and Hooker [7]. System response to internal

torques at the joint and external thruster torques on the

OMV is analyzed by integrating the equations of motion

with a set of Euler angle kinematical equations for the

OMV. The output is used to drive a graphics computer

display of the two-body system to show the resulting

motion. Since the OMV is not considered absolutely

stable, as in the previous work, the simple torque schemes

applied do not yield a satisfactory capture method as

evidenced by the propagation of the system orientation

and angular rates. This was expected, and Conway, et al.

[5] conclude that active control of internal and external

torques is required for a satisfactory capture.

The problem of remote orbital capture is thus

seen to have received only limited treatment. As sug-

gested by Conway, et al. [5], a more realistic approach

to the dynamics and control of the OMV-target system is

essential. They clearly illustrated this point through a

very specific capture problem, but they did not solve that
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absolutely stable and ignored the problem of controlling

the response of the OMV in applying torques to the target.

Kaplan and Nadkarni [4] went farther by proposing an OMV

with an articulating arm capable of four degrees of rota-

tional freedom relative to the OMV. A grappling device

on the arm was envisioned that could be driven to null its

4motion relative to the target for docking. The dynamic

response of this system to internal torques was analyzed

under two critical assumptions. First, articulating counter-

masses were available to balance dynamically the mass of

the articulating arm. Second, the mass of the OMV was

large relative to that of the target. While simplifying

the dynamic analysis, these assumptions result in an

extremely massive OMV with a very complex control system

for the articulating arm and counter-masses. With the

hope of simplifying the OMV concept, Conway, et al. [5]

continued this research with a new approach.

Conway, et al. [5] formulate a capture problem in

which a 1000 Kg target spacecraft is to be retrieved

from geosynchronous orbit to low-earth orbit. The OMV

for this mission is assumed to use conventional propulsion

and to be cylindrical in shape for transport in the cargo

bay of the Space Shuttle. The target spacecraft is

assumed to be symmetric about one axis so that the problem

of capturing it from a torque-free steady state of spin and
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of n rigid bodies. First, a reference body is selected

and designated as body 0. The angular velocity of body 0

is w and has three components in a body 0 fixed frame.

With the n-body system having r degrees of rotational

freedom, the angular motions of the remaining n-i bodies

are described in terms of -o and r-3 angular rates relative

to body 0 about the gimbal axes at the joints. By summing

equation (2.15) over all n bodies, three equations free

of T j result. The additional r-3 equations necessary are

obtained by using the fact that the constraint torque at

a joint is orthogonal to each of the gimbal axes at that

joint. Therefore, equation (2.15) can be summed over all

bodies to one side of a joint, j, to isolate Tj at that

joint. Taking the scalar product of this sum with each of

the gimbal axes, gi, of the joint yields equations equal in

number to the degrees of freedom at the joint, all free of

-CTAj Repeating this for all system joints yields r-3

equations free of constraint torques to complete the required

set of r equations. Hooker [7] shows the result of this

procedure applied to equation (2.8). When applied to

equation (2.15), the result is

I
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a00  a0 1  02 (ii3

a 10  Y

- (2.16)

L a 3, 0 r- 3

A x~ sx [DxP+ 2 w, xx D.. EE xm[D +2

f7 * x s R Ex Z m x + 2w x D X]

+ D x1 M[ i5m[R + 2 w x D R}

-* R - -R
gr j r-3,X Ex Sr-3 ,X 2 x +2cLXxDx1

2W-x x xI
r-+2 X X p m1R x 2p p DxIX

where

a0  z E 2 a dyadic, (2.17)

a Ok =2E2 Cki Xj ,k a vector, (2.18)

XI

a.i = 2i 2 i x 4)x , a vector, (2.19)

aik = j ix Ckvi xvi 9k a scalar, (2.20)

x = x x E 2 £kvi k 9k (2.21)
p k
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1, if g belongs to a joint anywhere
1

on the chain of bodies connecting
and £. = (2.22)In cbody ii and the reference body.

0, otherwise (e.g. p = 0).

Equation (2.16) is a second order matrix differential equa-

tion. To propagate system orientation with respect to an

external frame, r additional first order differential

equations are required. Three of these are usually Euler

angle rate equations, and the remaining r-3 equations are

d 1= (2.23)
d-t Yi Yi ( . 3

Joint motions with respect to the bodies they connect must

also be specified in terms of ;, and " Then equation

(2.5) is twice differentiated to compute D andD required

-R
for equation (2.16). The same is required where R and
..'R

are considered.

2.4 Two-Body Equations for the Capture Problem

SIecializing equation (2.16) to the two-body system

of the capture problem is straightforward and is presented

in detail here as an example of the Hooker [7] procedure

applied to equation (2.15). Referring back to Figure 1,

the OMV is body 0 and the target satellite is body 1. The

two-degree-of-freedom joint allows rotations y1 about

gimbal axis l' a unit vector in the e 1 direction, and Y2

St
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about gimbal axis g2, a unit vector in the direction.

The angular velocities of the two bodies are written as

W0 W 01 e1 + W02 2 + W03 e3 (2.24)

and

Wl 0 - Ylgl + y2 g2  (2.25)

Equation (2.15) for body 0 is

-C
00 +  0l 1 0  0 1

"'R -R

m1 to1 x (D0 1 + 0 x D0 1) (2.26)

and for body 1 is

-C

- xm'(R -R
+ D10 01 + 2-0  D (2.27)

Summing equations (2.26) and (2.27) eliminates the constraint

-c -ctorques since T = - T so the result is
01 1's h euti

(p + W ) 0 + ($01 + $11 )  Ci =

0 0 1 0 01 0 (

+ - 1 + 2w x D0 1 m1 ~01 x( 0 1  0 D0 1)
- "-R -'R

D x m(D1 + 2w x D). (2.28)
10 01 0 01

Equation (2.25) must be differentiated with respect to
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time and substituted into equation (2.28), so

1 =I 0 - g1 - 1i + g2 + + Y2 g2  (2.29)

Substituting into equation (2.28) yields

00 + + 01 + pl) 0 + i0 + ii ) ("yg0 + Y2g 2 ) =

E0 1 - (01 + 1 gl +22

m01x (D 0 1 + 2W 0 x D0 1 )

---R R
+ D x m(D + 2w x D (2.30)

Applying equations (2.17), (2.18), (2.21), and (2.22) to

equation (2.30) yields

a0 0 = + @01 + i0 + ii 3 x 3, (2.31)

a01  0 + ii"g , 3 x 1, (2.32)a01 1 11 g

a0 2 = ( 01 + : 1 1 ) g 2  , 3 x 1, (2.33)

-* -_. .
E =E - + g (2.34)0 0 01 (-Yl 1  + y2 g2)

--- *

and E1 = El - %11 (-Ylgl + y2g 2 ) (2.35)

At this point equation (2.30) with equations (2.31) through

(2.35) gives three of the five equations required to

describe the motion of the two-body system. The other

two equations are obtained from equation (2.27) by using
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the fact that T11 is orthogonal to both g1 and g2"

the scalar product of and g2 with equation (2.27) after

substituting for Wl yields

g 0+ ll )  c0 + pll'(-jIgl + 2g

-E 1 "-:R + 2w 0 x 0 = 0 (2.36)

and

g2" [( 0 +  i1 0 +  'l"(-Ylgl +  Y2 2
+c1 1) 0 +d 1 1 (y 1  2+

E1  D x m(D + 2w x )] = 0 (2.37)
1  D0 0 0 01

Applying equations (2.19), (2.20), and (2.22) yields the

following terms which appear in equations (2.36) and (2.37):

a10 = gl ( 10 + 1l1 )  1 x 3, (2.38)

a20 = g 2  ( i0 + ll ) , 1 x 3, (2.39)

a11 = gl ell gl ' (2.40)

12 = gl <li g2 ' (2.41)

a21 =g i gl ' (2.42)

and a2 2 = 2 ll g1  (2.43)

All that remains is to rewrite equations (2.30), (2.36) and

(2.37) in matrix form, which finally gives
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S01i

a -a -a -* -* "R -a00 a01 a02 W02 E0 +E 1 -m 1 0 1 x (D0 1 +2xD01)

W03 + D x m (D1 +2W xD0 1  (2.44)
0310 01 00

a^ a-*"'R -a a-'1l0 1l 12 l gl EID0 m (D l+2 oxD01)]

a2 0  21 a2 2  2  g2 [EI+DI0 x m (D + 2W0xD0 1 ]'
22 101 0 0

the matrix differential equation for the motion of the two-

body system in the capture problem with the joint moveable

on body 0.

As previously mentioned, the above derivation

yields a method to determine the constraint torque on the

joint. Equation (2.27) can be rewritten as

CS
T i Wo + Wl 1 1-- .R

-- R --R
10 x m(D0 1 + 2W0 x D 01 (2.45)

All quantities on the right hand side of equation (2.45)

are known by way of the integration of equation (2.44) and

the five kinematical equations. Therefore, the constraint

torque can be calculated directly from equation (2.45) in

the process of propagating the system motion throuqh numeri-

cal integration as Hooker [7] has shown.

2.5 Joint Constraint Force Equation

The constraint force on the joint in the capture

problem is calculated by a method similar to that for the

constraint torque in that Newton's equation for body 0 or
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body 1 is used in conjunction with equation (2.44) and

the kinematic equations. Rewriting Newton's equation in

terms of the variables in the capture problem is helpful

however. Since gravitational effects are to be ignored,

equation (2.1) can be written for body 0 as

-H = m0 (2.46)F 0 + F 0 1  ,mr

where r0 is the vector from the system center of mass to

the center of mass of body 0. From the definition of the

center of mass given by Greenwood [8],

mm
r0 =- 0 - 0 = m- (2.47)

Then

- l-R -

r0  m( + 2 wo x £R + W0 x

+ 0 x (W x ;)) , (2.48)

0 0

where is written in and differentiated in the e basis.

Substituting back into equation (2.46) yields

H = -
-- -

- + =O(4 R + wx +Wx P
01 0 n + . 0 x +i 0 X

+ W0 x(W 0 xe)) , (2.49)

which can be solved for F since all required quantities
01

are available from equation (2.44) and the kinematic

equations.

qp
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The component of the constraint force, F0, in

the direction of joint motion is the force required to

move the joint. However, equation (2.49) confirms that

the joint motion, contained in _ and its time derivatives,

-His not simply forced by F and F'. The joint acceleration
01 0

is also a function of the time derivatives of the angular

rates. Furthermore, from equation (2.44) the time deriva-

tives of the angular rates are functions of the joint

acceleration. Consequently, the joint motion must be

specified to propagate the system attitude motion.

2.6 Equation Verification

The equations derived in the previous two sections

were checked against the known results of various test

cases. Equation (2.44), the two-body system attitude equa-

tion, was verified first by two cases in which the right

hand side was known to be zero: first, the post-docking

configuration of the capture problem with no control forces

or torques acting and the joint position fixed and second,

the final spin-stabilized configuration after capture with

no control forces or torques and the joint position fixed

on the e3 axis. In these same two cases the constraint
3S

torque and force on the joint were also known to be zero,

so equation (2.45) for the constraint torque and equation

(2.49) for the constraint force could also be verified.

Equation (2.44) was further verified by numerical integra-

tion from several initial conditions and with either no
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control forces and torques acting or with only internal

control torques acting. In all of these cases system

angular momentum about the system center of mass must be

conserved, which was observed in the computer results.

The angular momentum calculated above had to

account for joint motion specified in each case. The

expression used for that calculation is derived here from

first principles. Designating H as the system angularcm

momentum about the system center of mass and writing both

inertia dyadics and all vectors in the e basis, the defini-

tion of system angular momentum from Greenwood [8] is ap'.ied,

giving

Hem =  0W0 +  iI +r, 0 x mor 0 I r, x m l r (2.50)

r0 was previously defined by equation (2.47) as the vector

from the system center of mass to the center of mass of

body 0. r is similarly defined for body 1 as

i m0 10 - 0 1) = m° (2.51)VI =  -m- i "01m

Substituting equations (2.47) and (2.51) into equation (2.50)

and combining terms gives

Hcm $00 + 1i~i

+ (ti0 - 0l ) x -M-1 - X01 )  (2.52)

Since all vectors are written in the e basis, tio and X01
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must be computed as

-I, 
=  , + (0 x OtA (2.53)

-R

a01 is not zero when the joint is moving relative to body 0.
--R

I0 is independent of joint motion but does depend on Y1i

2.7 Conclusion

By tracing the derivation of the equations of motion

of a multi-body satellite Qiven by Hooker and Margulies 16]

and Hooker [7], the effects of their assumptions were

found that restricted the application of their equations

to configurations in which joints were fixed in position

relative to the bodies they connect. The changes to their

equations that account for joint motion were shown in

equations (2.15) and (2.16). From these new equations was

derived equation (2.44), which describes the attitude motion

of the two-body system of Figure 1 with the joint moveable

on the surface of the OMV (body 0). A method for computing

the constraint torque and force on the joint from equations

(2.44), (2.45), and (2.49) was also indicated. These

results were checked by comparison with known motions

from simple initial conditions.
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CHAPTER 3

CAPTURE BY CONTINUOUS OPEN
LOOP OPTIMAL CONTROL

3.1 Introduction

In this chapter the methods of classical optimal

control theory are used to derive control histories

that detumble the target satellite. The optimal control

problem is nonlinear and cannot be solved in closed form,

so a numerical method is employed. The problem is struc- 6

tured to be compatible with the numerical method by con-

sidering only those cases in which the final absolute

orientation of the OMV is unspecified. Results are obtained S

for a case in which the controls are free and for cases in

which control constraints are applied. The results are com-

pared and discussed to show that capture is possible with

very reasonable control profiles and that the constraint

loads on the joint cause no undue structural requirements

or undue control requirements to move the joint during

capture. Furthermore, the solutions are seen not to be

diminished by leaving the final absolute orientation of the

OMV unspecified.

3.2 The Optimal Control Problem

The capture problem, as an open loop optimal con-

trol problem, is to drive the OMV-target system from the
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Iiven iniitioil state to the prescribed final state in a

SlecIfited time interval while minimizing the integral per-

torrnance ifluex,

t f nl.
1j 2 [ 2 . dt -(3.1)

2| t i~l

0

The u. is represent the system controls, which must be

defined. Since there are five rotational degrees of free-

dom in th-e two-body system, r~ive controls are selected, an

external thruster torque applied about each axis of the OMV

and an internal torque applied about each of the two gimbal

axes at the joint. No control variable is associated with

joint translation because the velocity and acceleration pro-

files are precomputed to satisfy the desired final joint

position.

Using fundamental optimal control theory, Bryson

and 11o [11], the system dynamic and kinematic equations are

adjoined as constraints to the integral performance index

with Lagrange multipliers or costate variables. After

defining the system Hamiltonian, the optimalit conditions,

by way of the Pontryagin principle, are applied, which trans-

form the original minimization problem to an equivalent

two-oint-boundary-value-problem (TPBVP) in the state and

costate variables. For the most general case of this

capture problem there are 20 independent differential

S

eqaions defnitngst the inters of10erfrac idpndx

enth statesandmlils costate arale.Afe
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The capture problem here can be suitably cast for

ar 1orithm recently developed by Pereyra [12], which

solves the TPBVP directly. The Pontryagin principle can J
then be applied to the solution to solve for the five con-

trol histories. Therefore, the TPBVP is derived next to

provide the inputs required by the algorithm.

3.3 The Two-Point-Boundary-Value-Problem (TPBVP)

To follow: the procedure given above for deriving

the TPBVP, a more compact form of equation (2.44) describ-

ing the system dynamics is desired. First, the 5 x 5 matrix

on the left hand side of equation (2.44) is defined as the

matrix A. Next, the five element vector on the right hand

side of equation (2.44) is defined as F Finally, by

letting

[w01 :02 '03 -' l '2 ]  = [l '2 A 3  -A 4  AS
]  x (3.2)

equation (2.44) can be written as

Ax = F (3.3)

However, reference to equations (2.11), (2.21), and (2.44),

with the fact that the gimbal axes at the joint are ortho-

gonal, shows that F can be decomposed into a sum of two

vectors, the control vector u and a vector F consisting of

the remaining terms in F Therefore, equation (3.3) is

written as

S~
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all but one of the elements were derived, and these were

verified at a selected point in the state and costate

space by using a numerical differentiation technique.

Agreement to at least eight significant fiuures was always

achieved. The complexity of the last partial derivative,

and the accuracy achieved above led to using the 6

numerical method for this one derivative to complete the

Jacobian.

Turning now to the results of the three selected

cases, Figures 2 through 7 summarize Case 1 in which all

five controls are unconstrained. In referring to these

figures and the others that follow note that

[K0  W02 a 03 7'1 Y2 Y1 ul u 2 u 3 u 4 u5 ] =

[W1 W2 W3 GlD G2D G1 T1 T2 T3 TGI TG2]

The Case I solution was achieved with a grid of 87 points.

The minimum value of the performance index was computed

to be 2.335. Figure 2, showing the histories of the compo- I

nents of the OMV angular velocity, indicates that the OMV

angular velocity vector remains very nearly aligned with

the body fixed e3 axis during capture. Therefore, the OMV

remains virtually in a state of pure spin about the e3 axis

during carmture, which confirms that specifyinq the final

orientation of the OMV is not necessary. Consequently,
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Of the two approaches offered by the algorithm to

solve the TPBVP's, the manual method of solving a sequence

of problems, varying the initial state of the system, was

selected for its ease of programming. For the case of

unconstrained controls, the sequence of initial conditions

used is shown in Table 4, all of which represent free spin

and precession of the target and pure spin of the OMV about

the e3 axis. The solution grid for each problem was used

as the initial estimate of the solution for the next prob-

lem. For the cases of constrained controls, the free

control solution for the initial conditions of Table 3 was

used as the initial solution estimate. To verify the com-

puter code, a simple linear problem was solved first and

checked against the analytical solution.

TABLE 4

Sequence of Initial Conditions

'Y 1Y2 i0 3

0.017 rad -0.002 rad/sec -0.019 rad/sec
0.087 rad -0.004 rad/sec -0.048 rad/sec
0.087 rad -0.009 rad/sec -0.096 rad/sec
0.175 rad -0.009 rad/sec -0.097 rad/sec
0.349 rad -0.009 rad/sec -0.102 rad/sec

(200) (-0.5 0 /sec) (-5.8 0 /sec)

Since the Jacobian matrix is critical to the algo-

rithm, some discussion of its derivation, coding, and

verification is important. For the capture problem the

Jacobian is a 12 x 12 matrix. Analytical expressions for
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TABLE 2

System Mass Properties

Mass 1 2 3

Target 1000 kg 1000 kg-m 2  1000 kg-m 2  1100 kg-m 2

Spacecraft

OMV 4500 kg 6400 kg-m 2  6400 kg-m 2  11800 kg-m 2

TABLE 3

Initial Conditions

= 0 .0

= 0.0O 2

03 -0.102 rad/sec

-1 = 0.0

2 -0.009 rad/sec

= 0.349 rad

e01e 0.0 me-ers

t01 2  -0.599 meters Joint Position

X01.e3 0.62 meters

-R Joint Velocity

1 (0.002 meters/sec)e2

-R 2 Joint Acceleration
01 0.0 meters/sec

= (1.75 meters)-tion 3
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(3.28) and the control constraint is

u4 - kl'1  - k2y1 = 0 (3.30)

Changes to two of the costate equations follow directly,

and pi and the other four controls are found again from

equation (3.14) written as

-T A-1
[u1 U u u u5] + T A + [0 0 0 W. 0] = 0. (3.31)

The Jacobian matrix is further changed from the previous case

since XA4 and X6 are functions of pi, and y1 and y1 appear

explicitly in the control driving the state equations of

the reduced twelfth order system.

3.7 Results

Applying the algorithm described in section 3.5 to

the TPBVP's for the case of unconstrained controls and the

two cases of constrained controls produces the results

presented here for a two-body system with the mass proper-

ties and initial conditions of Tables 2 and 3. The final

time is chosen to be 300 seconds, and the joint transla-

tional velocity is chosen as the constant required to move

the Joint from its initial position to the e3 axis in that

time. Snlution accuracy is controlled by setting the

r~lative error tolerance used by the algorithm to the

I rd level, 1.0 x 10 - 6 for all cases.

-S
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control constraints are adjoined to the performance index,

equation (3.12), with Lagrange multipliers. The resulting

Hamiltonian is

AF+ A

1 -T- -T~x5"

H 77-T +

[ -K ] + T[ 1 U3 - IC3 ]  (3.28)

where is a three element vector of Lagrange multipliers

and C is a three element vector of the constant thruster

torques. The same necessary conditions apply; they are

equations (3.14), (3.16), and (3.17). The TPBVP reduces

to a system of 12 differential equations as before with the

same costate differential equations. The state equations

are driven by a different control vector from equation (3.14)

given by

C C U uJ + -T

[C1 C2 C3 u 4 u5) + 15 A

+ [t l K 2 3 0 0] 0 (3.29)

which also determines . The Jacobian maxtrix is changed

only in the quadrant, i 1 x 6 ', , since the costate equations

are unchanged and the control constraints are not functions

of the states.

For the case in which u is ret,-resented as a tor-

sional spring and damper, bcsm e: -a . :,l,ir in e'vaaitn
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The results of a successful run of the a,iorithm

are in the form of a grid. The differential equations

are discretized and solved at program selected points

between t and tf, so the solution grid contains -he con-

verged values of the states and costates at those same

points. The control histories can then be comLuted isin,,

equation (3.15). Equations (2.45) and (2.49) also can be

applied over the grid to solve for the histories of the

constraint torque and constraint force on the joint.

3.6 Capture With Control Constraints

To this point a method has been developed to find

unconstrained, continuous, optimal, open loop controls that

solve the capture problem. Implementing these controls is

another matter, so the advantages of simplifying the con-

trol system by way of control constraints need to be

considered against the resulting increase in the cost of

capture. One realistic control constraint is to require

the thruster torques about the axes of the e basis to be

constants during the capture. A second constraint might

be to require the torque about gimbal axis 1 to be propor-

tional to the angle, yl' and the angular rate, yI, repre-

senting a torsional spring and damper.

The method of adjoining these control constraints

to the optimal control problem is described by Bryson and

Ho [111. In the case of constant thruster torques, the
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lx 6  1ix 6

1 x 6  i1x6

J= (3.27)

i1 6 i1 6

1ix6 1x 6

Computer storage requirements are manageable for a twelfth

order system, and single precision computations are adequate

since a relative error tolerance is used in the convergence

test.

The algorithm offers two approaches to solving non-

linear problems. One approach is to attack the nonlinear

problem directly. The other is a continuation method by

which the boundary conditions and nonlinear terms in the

differential equations are multiplied by a factor of c.

The algorithm advances E from zero to one and solves a se-

quence of problems using the previous solution as the initial

solution estimate for the new problem. With e = 0 the prob-

lem should be simple, linear if possible. With £ = 1 the

original problem should be recovered. If only the boundary

conditions are parameterized, the continuation method is

simply an automated version of the first method, which

can be applied to a sequence of problems, each with 0'

different boundary conditions from the previous problem,

using the previous solution as the initial estimate for

the new problem.
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TABLE 1

State Boundary Conditions

t t
0 f

W01 0.0 0.0

W 0 2  0.0 0.0

W03 specified free

0.0 0.01

12 specified 0.0

Y1 specified 0.0

Allowing w0 3 to be free at tf requires that X3 (tf) be

zero, giving the twelfth boundary condition required to

solve the TPBVP.

3.5 Solving the Reduced Order TPBVP

Having reduced the TPBVP to a nonlinear system of

12 independent differential equations, solution can be

attempted by a discretization method. The algorithm to be

employed is based on that developed by Pereyra [12]. Finite

difference methods convert the differential equations into

a higher order nonlinear system of algebraic-transcendental

equations to be solved simultaneously using a Newton itera-

tion. As inputs the algorithm requires the system of

differential equations forming the TPBVP, the boundary

conditions, and the nonsingular Jacobian matrix of equa-

tion (3.27), which is used in the Newton iteration.

.1
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the Hamiltonian, equations (3.12) and (3.13). Consequently,

the equations for A also become independent of v, , and 2.

Leaving the final value of x 7 (y2 ) unspecified yields

a similar result. The symmetry of the target makes the

Hamiltonian independent of x7 which gives

A7  
=  0 (3.22)

and

7 = Constant 
(3.23)

But X7 (tf) is zero since x 7 (tf) is free; therefore, X7 (t)

is zero.

The TPBVP is now reduced to a system of 12 inde-

pendent differential equations in six state and six costate

variables, which is summarized as follows:

O A= F A u ,(3.24)

x6 =x 4  (3.25)

and

1-T 6 1 X6(3.26)1,6 l- I6 1
Lx 4 1x6

where equation (3.15) is used to substitute for u after the

indicated partial differentiation is performed. The state

0
boundary conditions to be considered are summarized in Table

i.

6 b mmml l mmt nm ub mkmdmw11imi ,m --- m ma d wdm~u :--mmr ,m manl n --L 
- ". - ". .
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further complicating factors. The special numerical

treatment required of these two equations outlined by Jun-

kins and Turner [13] means that this capture problem is

not well posed for conventional numerical methods for

solving TPBVP's. In particular, the constant in equation

(3.21) is unknown. Furthermore, the two dependent equations

in the system of 22 equations of the TPBVP cause the Jacob-

ian matrix of the system to be singular. But a nonsingular

Jacobian is required for the Newton iteration used by

advanced shooting methods and discretization methods for 0

solving TPBVP's. Therefore, a simplification is sought to

reduce the dimension of the problem and eliminate the

two dependent equations from the TPBVP.

3.4 The Reduced Order TPBVP

The general TPBVP can be reduced to a system of 12

independent differential equations by selecting the boundary

conditions at the final time so that the equations for B

and v, as well as those for x7 and its associated costate,

X can be ignored. Noting that the equations for x are

independent of 3 suggests leaving unspecified at tf,

equivalent to leaving the final orientation of the OMV

unspecified. Doing so effectively ignores the kinematics

of the OMV, so the associated equations and the vector v

can be removed from the augmented performance index and
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TPBVP. Junkins and Turner [13] point out, though, that

equations (3.8) and (3.20) are equivalent and write

4
v2 = Constant. (3.21)

i=l

Therefore, as with B, only three of the equations for v

are independent, so there are in fact only 20 independent

equations in the TPBVP.

Twenty boundary conditions are required to solve

the TPBVP with two others determined from equations (3.11)

and (3.21). The 11 state variables are generally specified

at the initial time, tot and some or all of them specified

at the final time, tf. For those state variables unspeci-

fied at tf, their associated costate variables must be zero

at tf, except for v which must satisfy equation (3.21) as

shown by Vadali, et al. [14], since the performance

index is not a function of the final state.

Solving this TPBVP numerically is a very formidable

task. While Junkins and Turner [13] have treated the opti-

mal control of a rigid body with 12 independent equations

forming the TPBVP, moving forward to treat systems of

rigid bodies is not a trivial step. Even with a two-body

system, the state equations are much more complex, and the

costate equations become equally so. The dimensionality

increase has obvious impacts on computer storage require-

ments, and the two dependent equations in the TPBVP are
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_T 5T
u T = - 5 ]-1 (3.15)

meaning that the control vector, u, is a function of the

matrix, A, and the first five elements of the vector, A.

Further conditions require that

SA A = -H (3.16)

2 31 A, A5 ~ A6  7 -

and

-.T = HB  (3.17)

-A
Therefore,

A -  + A-iuJ

_T 
, (3.18)

V = v Q, 3 .19

or

xI

V=2 v (3.20)

since 2 is skew symmetric. Substitutir- -Dr u from equa-

tion (3.15) in the state equations (3.5), (3.6), (3.7), and

(3.8) and in the costate equations (3.18) and (3.20) gives

the nonlinear system of 22 ordinary, first-order, differen-

tial equations in the states and costates that form the
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However, as Junkins and Turner [13] point out, only three

of the EuLer parameter equations are independent since B

is constra ned by the equation

3 2 = i( 
i

1. (3.11)
i=0 I

The TPBVP can now be derived by first writing the

augmented performance index,

A + A- U x
tf1 -T- -T

P.I. = u { uu+ x 4  x 6
t

0 _x5 -x7
L 5 7

-T -+ d [ B - S]} dt , (3.12)

where A and v are seven and four element (costate) vectors

respectively. Next, the Hamiltonian, H, is extracted from

equation (3.12) and is written as

1-T -TI AAFT +

xu ++ - [] . (3.13)

x5

Applying the Pontryagin principle,

H = 0 (3.14)

gives the optimal control as
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Ax F + u (3.4)

or equivalently as

x = A-F + A U (3.5)
-i

where the existence of A is guaranteed in this case.

A set of kinematic equations to determine the

orientation of the two-body system relative to the fixed

i, j, k reference frame in Figure 1 is also required. The

orientation of the target with respect to the OMV is given

by integrating

6 4 (3.6)

and

Y2 = x7 = x. (3.7)

' The Euler parameters are used to determine the orientation

of the OMV. In the notation of Junkins and Turner [13],

the Euler parameter variational equations are

Q , (3.8)

where

0T= [o 1 2 3] (3.9)

and

0 x 1  x2 x

2 -x 3 x2 (3.10)

3 2

0'
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reducing the TPBVP from a system of 20 differential equa-

tions to 12 is clearly justified. The very nearly con-

stant behavior of w 0 3 in Figure 2 is the result of scaling.

Small fluctuations in w can be seen in the actual output,

and at 300 seconds w03 is -0.101 rad/sec. Figure 3 shows

the smooth behavior of y1 and in decreasing from their

initial values to zero at 300 seconds. Figure 4 shows that

yl remains very small during capture and, along with

Figure 2, suggests that optimal capture should be a quite

benign process. Figures 5 and 6, showing the external .

and internal control torques, are encouraging in that the

magnitudes of all controls appear not to impose excessive

requirements on the control system or to require much

longer time intervals for capture. In Figure 7 FC is the

magnitude of the joint constraint force on the OMV, and

TC is the dot product of the joint constraint torque on

the OMV with the constraint axis, which forms a dextral set

with gl and 92 Figure 7 indicates that the constraint

loads at the joint should not require a prohibitively

massive or stiff structure to link the OMV and target.

Also in Figure 7 the component of FC in the e2 direction,

F2, is the force required to maintain the constant joint

velocity during capture and also appears to pose no

excessive control requirement.

Case 2 considers the external torques on the OMV,

Tl, T2, and T3, to be constant during capture. Their
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assigned values are Tl = 0.0, T2 -0.07, and T3 = 0.011

Newton-meters. The final grid size remained at 87, and

the performance index was computed to be 3.066. Figures 8

through 12 summarize Case 2. Except for the external

torques, comparing the figures of Case 2 with the corres-

ponding figures of Case 1 shows little difference in the

histories of the states, controls, and constraint loads.

The increase in the performance index is the most immediate

quantitative difference between the two cases, while the

Case 2 figures show only small changes in the last third

of the capture. Of significance is the fact that capture

is possible with one component of the external torque set

to zero, which raises the question of what minimum control

configuration is required from controllability considerations.

In Case 3 the internal torque, TGl, is assumed to

be produced by a torsional spring and damper. The torque

constraint is chosen as TGI = u4 = 0.57 y1 + 100.0 11.

The final grid size was again 87, and the performance

index was 4.108. Case 3 is summarized in Figures 13 through

18. From Figures 14 and 18 the behaviors of yI, 12' and the

constraint loads are seen to be only slightly changed from

Case 1. The other Case 3 figures, however, show more

significant changes in the motion and torque histories.

In particular, as TGI goes to zero at 300 seconds, the

magnitudes of T1 and T2 increase significantly to achieve S
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x = [0 0 0 k 4 x 6 0] T -B x (4.14)

x 6  = 4

y = D y

Then with B3 3 = 0, = 0, so x3 remains constant at its

initial value. Furthermore, if capture is initiated with

x I = 0 and x2 =0 as in Table 1, then x1 and x 2 remain

zero throughout capture, and the OMV is always in a state

of constant spin about the e3 axis.

Implementing the control law given by equation (4.13)

requires k4 and the remaining four diagonal elements of

B to be specified. To keep control forces small, large

displacements of the target center of mass from the e3

axis must be avoided. Specifying the three constants of

the matrix, D, in the system, (4.14), in conjunction with

k4 and B44 can establish joint motion that closely follows

the decay of x6 to control the position of the target

center of mass.

4.4 Results 5

To compute state, feedback control, and constraint

load histories, the system, (4.14), was integrated forward

for 300 seconds from the initial conditions of Table 3 for •

Ix6 and yI. Y2 and Y3 were initialized to zero. The re-

maining system constants were selected as follows:

S

S
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Then substituting from the system, (4.4), yields

-T -1- -1 T T
V = x [A F + A ul + k 4 x 6 x 4 + yTDR

+ yTRDY . (4.11)

However, if D is already specified as negative definite,

the familiar Liapunov equation can be written,

TD R + RD = -Q , (4.12)

where Q is a positive definite matrix. To make V at least

negative semidefinite, choose

u + -F A 0 0 k4x 6 0] - ABx (4.13)

0

If the matrix, B, is positive definite, V is negative semi-

definite in x6. Furthermore, if B is diagonal and B3 3 is

zero, V is negative semidefinite in x3 and x Then from

the above lemma the system, (4.4), with the control, u, of

equation (4.13) is asymptotically stable with respect to

the largest invariant set contained in the x3, x6 plane. S

However, any rnnzero x6 results in a nonzero uA and, con-

sequently, a nonzero k Therefore, the largest invariant

set contained in the x3, x6 plane is the x3 axis, which

represents the spin-stabilized equilibrium if w03 does

not go to zero.

Substituting for u in the system, (4.4), results

in a linear system written as
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is bounded. Suppose that V is bounded below over the set J
d and that V(1 x6,y) < 0 for all 1 x6 and y in Qd* Let S 0

denote the subset of 2 d defined by

S 1 6 d : V( 1 x 6 'Y) = 0}

and let M be the largest invariant set of the system, (4.4),

contained in S. Then, whenever

1x6 (0), y(0) £ Sd'

the solution of the system, (4.4), approaches M as t - .

Note that V(1x 6, y) is not required to be positive definite

and that any solution trajectory of the system, (4.4), con-

stitutes an invariant set.

Using this lemma a nonlinear feedback control law

can be derived for the two-body system of the capture

problem. Take as a candidate Liapunov function

1 - lT - 1 2 -T -(48

V = I - x + -- k4 x 6 + y R y (4.8)

with -T [x1 x2 x3 -x4 x5 ] , (4.9)

where I is the identity matrix, k4  is a positive constant, S

and R is a positive definite constant matrix. Differentiat-

ing this positive definite V with respect to time gives

-T --- T T -
V x I x + k4 x6k 6 + y R y + y R y (4.10)
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4.3 Global Asymptotic Stability by Nonlinear Feedback S
Control 7

For continuous nonlinear autonomous systems such

as that described by the system of equations, (4.4), the

Liapunov direct method for establishing the global asympto-

tic stability of an equilibrium point is stated from

Theorem 6.7.2 of Meirovitch [16] as follows:

"If there exists for the system, (4.4), a positive

(negative) definite function V(ix6 ,Y) whose total time

derivative V(Ix 6 ,y) is negative (positive) definite along

every trajectory of (4.4), then the trivial solution is

asymptotically stable."

The trivial solution is, of course, the equilibrium

point, and the control vector, u, is now considered to be O

a vector function of x6 and y. However, applying the

above theorem to the equilibrium point of the capture prob-

lem can lead to situations in which V(1 x6,y) is only semi- S

definite, so a weaker sufficient condition is required.

An extension of the Liapunov direct method through

LaSalle's Theorem for autonomous and periodic systems is

developed by Vidyasagar [15]. One of the steps to LaSalle's

Theorem is given as lemma 81, which provides the required

stability condition for the capture problem. Stated here

for the autonomous system, (4.4), lemma 81 is as follows:

"Let V(1 x6,y) be continuously differentiable, and

suppose that for some d > 0, the set
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9xl 9x9 9xl 9x5 5xl

-1 EE - - _1 E.x (A-F] [A x [A-I u
x y

x6  0 0 0 1 00 0 0 0 x6  0 0 0 0 0 4

Yl 0 0 0 0 0 0 0 1 0 Yl + 0 0 0 0 0 (4.7)

0 0 0 0 0 0 0 0 1 y 2  0 0 0 0 0

Y3 000000-k3-k 2-k y3  0 0 0 0 0

where superscript E implies that the indicated quantities

are evaluated at equilibrium after any indicated partial

differentiation. The system, (4.7), is suitably formulated O

as a linear control problem. Controllability is assured

because a control is provided for each of the five degrees

of freedom in the system. Therefore, a control vector, u,

as a linear function of the nine states can be found to make

the equilibrium point asymptotically stable.

The details of deriving a particular linear feed-

back control, u, and quantifying it are not carried out

here because of the local nature of the stability that

results. Establishing global asymptotic stability requires

Liapunov's direct method applied to the nonlinear system

with the linear control law. The difficulty here is that

with the selected coordinate system a clear path to con-

clusive analytic results is not apparent. Howr-?er, the

Liapunov direct method leads to global asymptotic stability

if nonlinear feedback control is considered.
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R (4.2)01 '2 = Y2 '(42

and -R (4.3)

an autonomous system results by writing

x =AF + A u

A 6 =  x4

L2 3 0 1 Y2 = D y (4.4)

3 k 3  -k 2  -k 1  3

The matrix, A, is now a function of yI, and the vector,

F, is a function of the vector, y. The equilibrium point

of interest is

[x1 x2 x3 x4 x5 x6] = [0 0 C 0 0 0] (4.5)

and fly 2 y 3 I = [0 0 0] , (4.6)

where C is some constant. A simple translation in x3 brings

the equilibrium point to the origin.

The system of equations, (4.4), can be linearized

about the desired equilibrium giving
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4.2 Linear Feedback Control About an Equilibrium Point

The Liapunov indirect method as described by

Vidyasagar [15] is often used to design a linear feedback

control law such that an equilibrium point of a nonlinear

system is locally asymptotically stable. The system equa-

tions are linearized about the equilibrium point to set up

a linear control problem. If controllability conditions

are met, linear feedback can be found by various methods such

that the equilibrium point for the linearized system is

asymptotically stable. Then, invoking the results of the

Liapunov indirect method, the same linear feedback can

be applied to the nonlinear system assuring the asymptotic

stability of the equilibrium point in some neighborhood

of that point.

Looking now at the capture problem, the system

equations (3.5) and (3.6) are nonautonomous because the

matrix, A, and the vector, F, are functions of the joint

motion, which is a prescribed function of time. However,

since the equilibrium point of interest is the spin-

stabilized state with the joint at rest on the e3 axis

in Figure 1, the joint motion can be prescribed in terms

of three additional states to form an autonomous system

when adjoined to equations (3.5) and (3.6). Letting

to, e 2 = yl ' (4.1)
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CHAPTER 4

CAPTURE BY CONTINUOUS NONLINEAR FEEDBACK CONTROL

4.1 Introduction

The capture problem can also be solved by a feed-

back control approach in which the control vector, u, is a

function of the system state variables. In this chapter

Liapunov stability theory is employed to derive feedback

control laws which result in an asymptotic approach to the

final desired spin-stabilized state. Liapunov's indirect

or first method leads to a linear feedback control law

which guarantees the local asymptotic stability of the spin-

stabilized equilibrium. Global asymptotic stability is

achieved through a nonlinear feedback control law

derived from Liapunov's direct or second method and its

extension through LaSalle's theorem. This non-

linear control law is applied to the two-body system of

Figure 1 in an initial state of free spin and precession

of the target and free spin of the OMV. Numerical results

are presented to show state, control, and constraint load

histories during capture. The motion during capture is

seen to be very benign, and the controls and constraint

loads seem to be within very manageable bounds.

• , . - • .. ..
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the specified final state. On the other hand, different

constants in the torque constraint might yield a lower

cost.

3.8 Conclusions

Using an optimal control approach, continuous open

loop controls have been produced that detumble the target

satellite. The capture process has been seen to be very

benign with no significant change in the attitude of the

spinning OMV while the two-body system was driven to a

final spin-stabilized state. When the five system controls

were unconstrained, only very moderate internal (joint) and

external (thruster) torque magnitudes were required for a

very reasonable capture time of 300 seconds. Even with

various control constraints, control magnitudes were reason-

able, and the attitude of the OMV remained virtually

undisturbed. In all cases the constraint loads at the

joint indicate no requirement for a prohibitively massive

or stiff structure to link the two bodies. Furthermore,

only small forces are required to translate the joint with

the desired constant velocity.

L
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k = 0.001225 (4.15)

+0.046 0 0 0 0

0 +0.046 0 0 0

B 0 0 0.0 0 0 (4.16)

0 0 0 +0.07 0

0 0 0 0 +0.02

D =0 0 1 (4.17)

K0. 0 0 0 0 6 4 -0.0048 -0.12

B4 4 and k4 critically damped the x4, x6 system giving two

equal eigenvalues of -0.035. The matrix, D, resulted by

specifying three equal eigenvalues, -0.04. Consequently,

both x6 and yl were reduced to 0.05% of their initial

values in 300 seconds. While x4 rose to a peak value

of -0.0045 radians per second, both x4 and x5 were reduced

at 300 seconds to values less than 0.5% of their peak

values. The values of x., x2, and x3 were constant.

The histories of the system, (4.14), states, y,

x 4 , x 5 , and x6, are shown in Figures 19 through 21.

Figure 19 plots the joint motion histories corresponding

to y. Figures 20 and 21 plot the histories of x4, x5,

and x6, which correspond as before to YI' 12' and y1

respectively. The joint velocity and m1 both remain quite
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small over the 300 second interval. Maximum joint

velocity of 0.0065 meters per second is achieved at 49

seconds while -1 peaks at -0.0045 radians per second at

28 seconds.

At each integration step the control vector, u,

was computed from equation (4.13), and the constraint

torque and constraint force were computed from equations

(2.45) and (2.49) with inputs from the system, (4.14).

The component of the constraint force in the e2 direction

again gave the force required to move the joint. The

five control histories are shown in Figures 22 and 23.

Tl and TG! are seen to have similar profiles. T3 and TG2

oppose each other in sign but otherwise differ primarily

only in the first 50 seconds. When the performance index,

equation (3.1) is applied to these control histories a

value of 386.74 results. The constraint loads, as defined

in Chapter 3, are shown in Figure 24.

4.5 Summary and Conclusions

The Liapunov stability theory has been applied to

the two-body system of the capture problem to develop a

nonlinear feedback control law which results in global

asymptotic stability of the X3 (W) axis of the system

state space. The control law contains no linear terms

but does transform the original nonlinear dynamic system

It

.. .. . ... .2..... . ...... . -................. -- - ".-,- . - , _ i - ' - . . . .1.*
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into a linear system, which is easily analyzed. As an

example the free parameters of the control law were

specified to produce desired system response. Profiles

of the states, controls, and constraint loads were

developed by numerical integration of the resulting

linear system over a 300 second interval. While peak con-

trol torques and constraint loads do not appear excessive,

they directly depend on the specified parameters in the

control law. Consequently, these peaks can be reduced

by appropriately respecifying the control system gains.

With this same feedback control law, the motion

of the two-body system was seen to be very benign. From

initial conditions of free spin and precession of the

target and free spin of the OMV, the attitude of the

OMV and its spin rate do not change during capture. The

cone angle of the target decays as a second order linear

system while the target's spin rate decays as a first order

linear system. The joint moves to the e3 axis on the OMV

as a third order linear system, which is specified to 0

coordinate joint motion with cone angle decay. Conse-

quently, the complete system motion is easily visualized,

and the final orientation of the system can be deduced

without formal use of a complementary set of kinematic

equations for the OMV.
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CHAPTER 5

I
CONTROL SCHEME COMPARISONS AND CONCLUSIONS

5.1 Introduction

Two control strategies have been developed to

solve the remote orbital capture problem proposed in

Chapter 1. Optimal control theory was employed in Chapter

3 to solve for continuous open loop controls. Liapunov

stability theory was used in Chapter 4 to derive continu-

ous feedback controls. Numerical examples of both strate-

gies have shown that the motion of the two-body system is

very benign during capture.

In this chapter the numerical examples of both

control strategies are compared, and an example of using

both strategies in a sequence is presented. Significant

details of the previous chapters are reviewed, and some

conclusions are drawn. To close, several directions for

future work are suggested.

5.2 Control Scheme Comparisons

The numerical examples of open loop and feedback

control contain significant differences. Most significant

is that open loop controls drive the two-body system to

the specified final state exactly in the specified time

while the feedback controls give only an asymptotic

approach to that state. Second, the joint motion on the OMV

- ----- , . ".---- .-..-.~,- - .---.- ' - - - -
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is specified differently in the two examples. Consequently,

the objective of the comparison is limited to forming some

idea of the ranges of the control torque and constraint

load magnitudes that can occur with different control

strategies.

Table 5 shows the ranges of control torque and con-

straint load magnitudes that occurred in the numerical

examples of unconstrained open loop control and feedback

control. Both examples considered a 300 second maneuver

time. In the case of feedback control, all states were

reduced to within 0.5% of equilibrium values from peak

values. Significant differences in the required control

torque magnitudes can be seen except for TG2. On the other

hand, the ranges of the constraint load magnitudes, F2,

FC, and TC, show smaller variations. But no attempt was I
made to limit the ranges of the control torque and con-

straint load magnitudes. To the contrary, only a simple

scheme of selecting free parameters in the control law

was considered to obtain the desired dynamic response of I

the two-body system. Even so, the resulting forces and

torques do not appear prohibitive from control or struc-

tural considerations. As a final comparison recall that I

the cost of capture, as measured by the performance index,

equation (3.1), was 2.335 for unconstrained open loop con-

trol and 386.74 for feedback control. While this seems
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TABLE 5

Control and Constraint Load Ranges for Unconstrained
Optimal Open Loop Control and Feedback Control*

Open Loop Feedback

Ti -0.012 to -2.65 to
(newton-meters) +0.013 +1.74

T2 -0.246 to -1.94 to
(newton-meters) +0.001 +0.39

T3 +0.0049 to -0.19 to

(newton-meters) +0.0173 0.00

TGI -0.23 to -2.01 to O1
(newton-meters) +0.21 +1.50

TG2 +0.028 to 0.00 to
(newton-meters) +0.200 +0.28

F2 -0.86 to -1.07 to
(newtons) +0.12 +0.58

FC +0.024 to 0.00 to
(newtons) +0.270 +1.07

TC -0.27 to -0.25 to

(newton-meters) +0.54 +1.52

*[u1 U2 u 3 U4 u 5 ] = [TI T2 T3 TGI TG2]

TC = Dot product of constraint torque with constraint axis

FC = Magnitude of constraint force

F2 = Component of constraint force in e 2 direction

4
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to indicate a clear advantage for open loop control, the

cost of feedback control could be very sensitive to the

choice of gains in the control law and the system describ-

ing the joint motion.

While the ranges of the control magnitudes for

the two examples are quite different, the motions of

the two-body system under the two control schemes are very

similar. With open loop control the OMV very nearly main-

tains a state of pure spin about its axis of maximum moment

of inertia. With feedback control, because of the initial

conditions, no deviation from the state of pure spin results.

In both cases the target cone angle and spin rate relative

to the OMV are smoothly eliminated as the connecting

joint moves to the e3 axis on the OMV. A final spin-

stabilized configuration results with either control scheme.

5.3 Capture by an Open Loop Control to Feedback

Control Sequence

Open loop control cannot achieve the specified final

state exactly because of the presence of small system

errors. On the other hand, feedback control derived by

the Liapunov method can bring the two-body system arbi-

tarily close to the desired final state in a fixed time,

though perhaps at much greater cost. Therefore, a switch

during capture from open loop control to feedback control

might be considered. An example can be constructed using

the case of unconstrainet optimal open loop control where
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a switch is made to feedback control after approximately

290 seconds of the nominal 300 second maneuver. From the

solution grid of the TPBVP, the state of the two-body

system at 289.655 seconds is given in Table 6. Allowing

an additional 130 seconds for nonlinear feedback control,

the free parameters of equation (4.13) are specified as

follows:

k4 = 0.00855625

+0.046

+0.046 0

0.0
B=

+0.185

0 +0.02

The joint motion, as defined by the system, (4.4), is spe-

cified by three equal eigenvalues of -0.11.

This example of switching from open loop to feed-

back control is constructed to achieve a slicgitly differ-

ent response from that in the previous example of feedback

control. Here the joint position and yl overshoot their

equilibrium values by 0.0021 meters and 0.0010 radians

respectively. However, relative to their values at 289.655

seconds, they return to within 0.01% of equilibrium after

130 seconds of feedback control. The values of BII, B22 ,

and B55 are arbitrarily left unchanged from the previous

p
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TABLE 6

System State Summary for the Open Loop-Feedback Case

289.655 seconds 419.655 seconds
(termination of (termination of
optimal control) feedback control)

S01 -0.00061651 rad/sec -0.000001559 rad/sec

02 0.00039625 rad/sec 0.000001002 rad/sec

03 -0.10128 rad/sec -0.10128 rad/sec

-0.0013204 rad/sec 0.0000000417 rad/sec

2 -0.00057541 rad/sec -0.00004274 rad/sec

¥i 0.0068254 rad -0.000000496 rad

0 e2  -0.020639 meters 0.00000095 meters

1 e 2  0.0019951 meters/sec -0.0000000895 meters/sec
.- R 00meters/sec 2

-R1 0.0 "s 20.0000000083 meters/sec 2

;r0 e2  0.

4q

T--

S
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example of feedback.

To generate state, control, and constraint load his-

tories, the system, (4.14), can be integrated forward for

130 seconds. The control vector, u, can be computed from

equation (4.13), and the constraint loads, from equations

(2.45) and (2.49) as before. Linking these histories with

those for optimal open loop control results in composite

histories for the 419.655 second interval. The system

states at the terminal time, 419.655 seconds are shown

in Table 6.

Figures 25 through 30 show the composite histories

of the states, controls, and constraint loads for the

419.655 second interval. The transition of four of the

states to exponential decay is clearly shown. The spin

rate, w 03' is constant over the last 130 seconds since

B3 3 = 0. The sixth state, yI, also decays exponentially,

but scaling prevents its depiction. The decay of the con-

trols and constraint loads is also clear, but more apparent

are the sudden changes which occur at the switching point.

Modifying the system response might bring the feedback

controls closer to the open loop controls at the switch.

A related control strategy would be to allow the

optimal controller to execute completely its precomputed

control histories, and then reduce any residual errors

with feedback control. Finally, the joint would be locked
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to give a single, spin-stabilized, rigid body. From the

example above, the system state of 289.655 seconds could

be considered the state actually achieved after 300

seconds of open loop control. Then the same 130 seconds

of additional feedback control from the example would

result in the system state given in Table 6 for 419.655

seconds. In this case, however, the total maneuver time

would be 430 seconds. The control cost of this strategy

from equation (3.1) is the open loop cost plus the feed-

back cost, which would be 2.335 + 1.400 = 3.735. There-

fore, if feedback control should prove to be impractical

for the complete capture maneuver, this dual control stra-

tegy might be a good compromise.

5.4 Summary and Conclusions

The problem of remote orbital capture has been

addressed from, a more realistic approach than others

found in the literature. Previous work has not effectively

considered the requirement to control the absolute motion

of the two-body system as relative motion between the two

bodies is eliminated. Here a control problem based on the

coupled dynamics of a two-body system was considered.

Eulerian-based equations of motion were derived which .

accounted for a novel concept: The joint connecting the

two bodies is allowed to translate along the surface of

one of the bodies. Derivation of these equations was
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motivated by interest in a very specific caoture problem,

that of detumbling a freely spinning and precessing axially

symmetric statellite by a spinning axially symmetric

retriever spacecraft. This initial configuration is

dynamically stable, and joint motion on the surface of the

retriever spacecraft makes possible a final spin-stabilized

configuration. The Eulerian-based equations of motion allow

internal and external torques on the two-body system to

be specified, so the capture problem became one of find-

ing control profiles or control laws to drive the two-body

system to a spin-stabilized final state.

Since the posed capture problem is nonlinear,

optimal control theory was employed first to solve for

open loop control profiles. Optimal control theory had

not been applied previously to this type of multi-body

problem, but difficulties were expected from results of

optimal control of single rigid bodies. In particular, the

problem in which the final orientation of the two-body

system is completely specified is very difficult to solve

numerically because the kinematic Euler parameter equations

are not independent. Consequently, these equations were

eliminated from the problem by leaving the final Euler

parameters unspecified. Of the two remaining kinematic

equations, one was also eliminated because of symmetry.

The one kinematic equation retained and the appropriately
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specified joint motion were sufficient to achieve the final

spin-stabilized state. The results of the optimal open

loop control investigation, however, pointed out thati

virtually nothing was lost from these simplifications since

the orientation of the spin axis of the retriever space-

craft was very nearly constant during capture. Control

requirements seem quite reasonable for maneuver times of

five minutes and with control constraints more typical of

an actual system. Finally, the constraint loads on the

joint seem to impose no prohibitive structural requirements

or control requirements to effect the prescribed joint

motion.

A second approach to the nonlinear control prob-

lem was to develop a feedback control law by using Liapunov

stability theory. The Liapunov indirect method showed how

linear feedback could produce an asymptotic approach to

the spin-stabilized equilibrium from within some local

region of the equilibrium. Difficulty in determining the

size of that region led to a nonlinear feedback control

law derived from Liapunov's direct method and LaSalle's

theorem. The nonlinear control law, when applied

to the dynamic equations, transformed the original non-

linear system to a linear system, which was analyzed

numerically to determine control and constraint load

profiles. The analysis was keyed to achieving desired
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system resuonse with little attention to limiting controls

and constraint loads. Consequently, when a very close

approach to spin-stabilized equilibrium was required in

a maneuver time of five minutes, peak controls and con-

straint loads were significantly greater than those for

iootir-ial open loop control. However, even here peak magni-

tudes were not large. Furthermore, these peaks might be

reduced significantly by a more systematic approach to

,arameter selection in the control law and the system

describing the joint motion.

The final approach considered for solving the

capture problem used optimal open loop control first. Then

residual errors were eliminated by nonlinear feedback con-

trol. Here again, specifying system performance led to

significant increases in peak controls and constraint

loads at the initiation of feedback control. On the other

hand, these peaks were at least 65% less than those ob-

tained by using only feedback control for capture. A much

further reduction was expected, but this again pointed

out the need for further investigation into parameter

selection for the feedback control law and the joint

motion.

As with optimal open loop control, the feedback

control approach did not control the complete absolute

orientation of the two-body system. However, feedback
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control was initiated with the retriever spacecraft in

or near a state of pure spin about its symmetry axis.

Then by design the controls either maintained pure spin

or produced pure spin with little change in spin axis

orientation. Consequently, the two control approaches are

consistent, producing similar results.

To summarize, the work presented here is signifi-

cant in several respects. First, the field o fmulti-body

dynamics has been extended by the general equations of

motion derived in Chapter 2. Second, optimal control

theory has been applied to the problem of remote orbital

capture through these equations to address control require-

ments more realistically than previous work. Third, a A

nonlinear feedback control approach to orbital capture

has been demonstrated. Finally, structural requirements

of the joint in the two-body system have been considered

by solving for the constraint loads on the joint during

capture.

5.5 Suggestions for Further Research

While this work has audressed a very special cap-

ture problem, a foundation has been laid to move forward

to more general problems. The equations of motion can be 4

extended to asymmetric target satellites and to retriever

spacecraft with reaction wheel control systems. Rendezvous

and docking strategies must be developed that consider more

.. .. - .'. , " , • - , , -" • ", "I % " ' "-" - -" -" . _ _ . • _ _ .'
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general dynamic states of the target. Convenient rigid

appendages may not be present on prospective targets,

so deployment of grappling devices from the joint on the

retriever spacecraft needs to be considered. These are

only three of many possible extensions of the work pre-

sented here, but they point out significant areas that

require investigation.
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